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Abstract. It is shown that in an anomalous Yang-Mills theory in 1 + 1 dimensions one can 
realise a non-central extension of a loop group, in addition to the well known central 
extension. The descent equations and Mickelsson’s local coordinate techniques are used 
to construct 2-cocyles for the extended groups. It  appears that in two-dimensional theories 
the central and non-central extensions of a loop group are compatible and equivalent to 
each other. The transition functions between different coordinate systems are also defined. 

1. Introduction 

Recently, there has been much active interest in certain infinite-dimensional Lie algebras 
in mathematics and theoretical physics (Fubini et a1 1973, Friedan et a1 1984, Goddard 
1985, Olive 1985, Goddard and Horsley 1976, Kac 1980, Frenkel and Kac 1984). An 
example of an infinite-dimensional Lie algebra is the Kac-Moody algebra. The Kac- 
Moody algebra, which is also called a loop algebra, arises in non-Abelian anomalous 
gauge theories in two spacetime dimensions. The central extension of this algebra is 
called a commutator anomaly (‘Schwinger-Jackiw-Johnson term’) (Schwinger 1959, 
Jackiw and Johnson 1969) and is found to relate to the 2-cocyle of the cohomology 
of the Lie algebra of the group of gauge transformations (Faddeev 1984, Mickelsson 
1983, 1985a, Nelson and Alvarez-GaumC 1985). On the other hand, Pressley and Segal 
(1980) and Segal(l981) examine the central extension of the loop group corresponding 
to the loop algebra. They note that there is a topological obstruction to the construction 
of the extended group, i.e. one cannot think of the extended group as a product, but 
one should define it as a non-trivial fibre bundle. In a recent paper, Mickelsson (1985b) 
gives a concrete realisation of the central extension of the loop group in terms of local 
coordinate systems. 

It is well known that in an anomalous Yang-Mills theory the anomalies entering 
the ‘descent equations’ (Stora 1983, Zumino 1983) are not uniquely defined. In 
particular, in one space dimension the commutator anomaly can be taken to be either 
‘c-number’ (Zumino 1985) or to depend on a gauge field A (Zumino 1983); the former 
is the well known central extension of the loop algebra and the latter says that the 
Kac-Moody extension is non-central. On the group level, this means that we, can 
construct two kinds of extensions of the loop group r: the central extension U(  1) + r + r 
and the non-central extension d( U( 1)) + f + f ,  where d( U( 1))  is the group of functions 
A : d + U( 1) with pointwise multiplication and d is the space of all gauge fields. 
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One object of this paper is to describe the central extension U(  1) + f +  r which 
exists in an anomalous Yang-Mills theory in two dimensions. At this point, we should 
emphasise that we are considering a different model from the Wess-Zumino model 
(Wess and Zumino 1971, Witten 1983) which Mickelsson considers and in which there 
is no coupling with the external gauge field. Then we shall realise explicitly the 
non-central extension &(U( 1))  + f. + r involved. We find that two kinds of extensions 
are compatible and equivalent to each other. It follows that in (1  + 1 )-dimensional 
anomalous Yang-Mills theory we can realise both central and non-central extensions. 

2. The central extension of the loop group 

Let G be a compact Lie group and 3 its Lie algebra. Let (a,  b )  be an invariant bilinear 
form on 9. In one space dimension the simplest choice of commutator anomaly of 
an anomalous Yang-Mills theFry gives rise to the current algebra which has the form 
of the Kac-Moody algebra 9 = Map(S' ,  9 ) O i R  (Map(S1, M )  =the  loop space of 
C" maps: SI + M )  with the commutator (Zumino 1985, Faddeev 1984) 

[U, u](x) = [u (x ) ,  u(x)]+ic  (U, U') dx  

in which U, U E Map( SI, %), c is a real constant and iR commutes with everything. We 
want to construct a group f which has 4 as its Lie algebra. We assume the following 
composition law (Segal 1981, Mickelsson 1985b) 

(2.2) 

where A, p E U ( ~ )  (circle group), g , ,  g z E r =  Map(S' ,  G)  (loop group) and 6 is a 
real-valued function of g, and g,; the product g,g, is defined pointwise. 

Let us now construct the 6. For simplicity, we consider the case G = SU(2). Locally 
the cocycle 6 can be obtained from the so-called descent equations. The starting point 
is the Chern-Pontryagian density in four dimensions (S4): 

(SI, Aj(g2, P )  =(g,g*,  A/* e x P P r i 6 k I  f g J l )  

1 
8T RT'( F )  = -7 tr F' with F = d A + A ' .  (2.3 j 

The four-dimensional integral of R i ' ( F j  is the second Chern number Z. Let i specify 

Locally, 0;' is exact: 
a particular gauge, i = A g l  y , =  ( 8 , .  , . gO- 'A(g , . .  . gO+(gi  * - .  g , ) - ' d ( g l . .  . gl) .  

fl,'(F) = dR:'(A) = dRY(0) (2.4) 

where 

- 1  
8 7 -  

R:'(O) = y t r ( A d A + i A 3 )  

is the Chern-Simons density. Taking the coboundary A (Faddeev 1984) of (2.4) gives 
dAfl:(O) = O  since 0,' is gauge invariant and d commutes with A .  Thus locally 

(3R:)(O, 1) 1) -R:(O) = dR:(O, 1). (2.6) 
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Using A2 = 0, we have from (2.6) dARA = 0, i.e. An; is exact: 

(AR:)(O, 1, 2 ) ~ R : ( l , 2 ) - f l ~ ( 0 , 2 ) + R : ( O ,  l )=dR;(O,  1, 2). (2.7) 

Similarly AR; is exact 

(AR;)(O, 1,2,3)=R:(1,2,3)-Rf(0,2,3)+R:(O, 1,3)-fl:(O, 1,2)=dR;(O, 1 ,2 ,3) .  
(2.8) 

Equations (2.4)-(2.8) are called the descent equations (Stora 1983, Zumino 1983, 
Faddeev 1984). 

Now let us consider (2.6) to be restricted to three dimensions ( S 3 ) .  Restricting the 
R: so obtained to two dimensions ( S ? ) ,  we get the non-Abelian anomaly R: in two 
dimensions. Similarly, consider (2.7) to be restricted to two dimensions and then 
restrict Rf to one dimension (SI); then we can define cochain 

a" = lS, a:. 
Now the cocyle 6 can be defined as follows. The coboundary of SZ: is 

1 1 
8 rr- 24 rr 

(AR:)(O, l)=R:(l)-R;(O) = -7 d tr(A~igg-')+--,tr(dgg-')~. (2.10) 

The last term CI3' = ( 1/24.rr2) tr( dgg-I)' is closed and thus locally C'" = dH"' for 
some 2-form H'" .  In order to compute H"' , we consider the set B =  
{ X  E % i f  tr X ' <  T'} and GI = SU(2)/{-1}; then the exponential map B + GI is 1 - 1 
and C"; the sphere tr X 2  = 277' is mapped onto the point -1. Let g be a map from a 
2-sphere in four dimensions into GI ;  we can define the logarithm In g : S'+ B. Write 
such g as exp U and we can compute H'" from the integral 

H"'(ln g )  =7 tr(dg(x, t)g(x, t ) - ' ) 3  2 4 ~ -  I' (2.11) 

in which g(x, t )=exp( tu(x) ) .  By (2.6), (2.10) and (2.111, we obtain the non-Abelian 
anomaly in two dimensions: 

(2.12) 

where we have used 0 to denote a quantity Q to be restricted to two dimensions. 
Applying the coboundary operation A to (2.12) gives 

(AR:)(O, l ) = R : ( l ,  2)-R:(O,2)+R:(O, 1) 

1 
8 rr- 

- , tr(g; 'dgIdg2g;')+ H"'(ln g l ) +  H'"(1n gZ) - H"'(1n i l g 2 ) .  
(2.13) 

We see that Ani does not depend on A; this is a property of the descent equations 
special to two-dimensional theories. 

Let D2 be some two-dimensional disc in four dimensions. Then any g : D2 + G ,  can 
be restricted to a map g : dD2 + G I ,  where aD' is the boundary of D2. We shall consider 
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the case SI = d o ' .  Let gI and g2 be two discs in G I  such that i l k 2 :  D'+ G I .  We can 
define 

H'"(1n g l ) +  Hiz ' ( ln  g") - H'"(ln g',g2). (2.14) 

The function a"(gl, g r )  depends on the chosen restriction; in other words a" depends 
on the chosen disc D'. The proof is as follows. Let E l + ,  g2+:  D t - G ,  and g l - ,  
gZ-: D? + G I  be the maps defined on the north semisphere D$ and south semisphere 
D?., respectively, such that g,+g2+ : D: + GI and gl-g2- : D? + G I ;  ( E l  +, gz-) have the 
same values as (g l - ,  gZ-) when restricted on SI = dDi = -aD!. Then 

a"(gl+,g,,)-a"(gl-,gz-)= cAfi:)(o, 1.2)-JD- ( A f l l H o ,  1 ,2)  
Sd 

1 
8 7 ~ '  

- - -- js2 tr(g;ldg,d&&')+ Js2 H'"(ln g,)+ H"'(ln i2)  - H"'(ln g',g,) 

c 

(2.15) 

We would like to show that (2.15) equals an integer Z. For this purpose we divide S4 
into three discs D 4 ( i ) ,  i = O ,  1 , 2  (Hou et a1 1986). The boundary of O4(i) is a 
three-dimensional sphere S 3 (  i ) ,  aD4( i )  = S3(i) .  We then divide S 3 (  i) into sums of discs 
D3( i, j ) ,  S3(  i )  = I;,,,,, D3( i, j ) ,  such that D3( i , j )  have a common boundary S2, 
8D3( i , j )  = S2(i,j) = (-l)'+'-'S*. Then the last term in (2.15) is 

5 ( A Q p ) ( i , j )  
' < I  D'i 1 . 1  I 

(2.16) 

It follows from (2.15) and (2.16) that the function a" depends on the chosen restriction. 
However, the difference Z does not matter since we are only interested in e x p ( 2 ~ i a " )  
and not in a" itself. 

The new product law (2.2) is associative iff 

a" ( g 2 ,  g3) + a" (SI 9 gzg3) - a" ( g 1 ,  g2) - a" (g1 gz 9 g3) = Z. (2.17) 

However, this is just the cocycle condition. In order to check (2.17), we notice that 
for the chosen restriction we can write by (2.7) and (2.14) 

(2.18) 

(2.19) 
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(2.20) 

Thus equation (2.17) is seen to hold. 
The function a * ( g , ,  g z )  defined above is only the 2-cocycle for the extended group 

of Map(S ' ,  G I )  by U(1). The set Map(S' ,  G I )  is not a subgroup of r and one cannot 
continuously extend 4 to the whole group because of the discontinuities arising from 
the logarithm. Therefore, in order to cover the whole group one has to use local 
coordinate systems (Mickelsson 1985b). Choose two maps g1 : D2+ SU(2)/{-a} = G,, 
g2: D 2 +  SU(2)/{-b} = G b  such that glg2: D 2 +  SU(2)/{-c} = Gc;  then their restrictions 
on SI = aD2 are maps g ,  : SI + G, and g 2 :  SI -+ Gb. Obviously, for each a E SU(2) the 
set of all maps g :  SI+ G, defines a coordinate patch V, on Map(S ' ,  SU(2)); the sum 
of all coordinate patches V, gives a cover of Map(S' ,  SU(2)),  

Map(S' ,  SU(2)) = U V,. 
U E S L I Z I  

Thus we can define (Mickelsson 1985b) 

(2.21) 

H"'(ln a- 'gl)  + H"'(1n b- 'g2 )  - H2(ln C-'g,&). (2.22) 

Modulo integer Z the function &c(gl ,  g 2 )  does not depend on the chosen restriction. 
The proof is the same as the case in which a = b = c = 1 since dH"'(1n a - l g )  = 
C ' 3 ' ( a - 1 g )  = C I 3 ' ( g )  for a constant a E SU(2) and the descent equations remain 
unchanged. The transition functions between V, and v b  (for a gauge field A )  are 
defined by 

h , , ( g )  = H'2 ' (h  a. - 'g )  - H'?'(ln b - ' g )  (2.23) 

where g E V, n v b  is a restriction of g : D'+ G, n Gh on SI = aD'. The value h , , ( g )  
does not depend on the chosen restriction since one is only interested in exp(2.rrihOb). 
namely, let g ,  be two discs 0: and D? in G, n G b  such that their restrictions on 
SI = dD$ = -aD? have the same values. Then we can form : S' = 03 U D! -+ G, n Gb 
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by joining along the common boundary and the difference between the two expressions 
for hob is 

= Is: H'"(ln a - ' i )  - H'"(ln b - ' g )  = C I 7 ' ( g a )  - C ( 3 ' ( g h )  6,; 
c 

(2.24) 

where gab : S'+ G is obtained from g, and gb by joining along S' = dD3 and W [ g o h ]  
stands for the winding number of map gob. Therefore by the definitions 

(2.25) &ohc(&!l 9 g2) - &a'hr(gl 9 82) = ha, ( S I )  

and similarly for the indices b and c. 

3. The non-central extension of the loop group 

As is well known, in one space dimension the current algebra of an anomalous 
Yang-Mills theory can have the following anomaly (Zumino 1983): 

[U, v ] ( x ) = [ u ( x ) ,  u ( x ) ] + i C  tr(uuA) L 
where A is a %?-valued vector potential 1-form on S ' .  The Lie algebra extension of 
Map(S' ,  59) is now infinite dimensional and thus the extension is non-central. It is 
natural to think of (3.1) as the Kac-Moody algebra on the gauge orbit through A in 
the space of all vector potentials; the different gauge orbits correspond to the different 
Kac-Moody algebras, in contrast to the case discussed in 9 2 .  In order to examine the 
group corresponding to (3.1), we consider the extension &(U(  1)) + f +  r; it leads us 
to assume the multiplication table 

where A, p E & ( U (  l ) ) ,  and now a is a real-valued function of g , ,  g2 and A. We can 
ask what the group cocycle cy is. Following the same arguments as in the previous 
section, locally we can define 

Xt (AX~,Aplg2) -Xt (A ,  AglRz)+Xf(A,  A") (3.3) 

where 

(3.4) 
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with A ’  being a 1-simplex in group space, and  xi, given by the so-called ‘triangle 
formula’ (Manes er al 1986), has the following expression: 

1 
24 T 

xi =z t r { g - ’ 6 g ( g - ’ A g + g - ’ d g ) }  (3.5) 

in which 6 is the differentiation with respect to any parameters which the element g 
may depend on. When g ,  and g 2  are in the vicinity of the unit element the function 
a reduces to the anomaly in equation (3.1). 

Modulo integer Z the function a does not depend on the chosen extension; the 
proof is essentially the same as in the previous section. Notice that a differs by a 
coboundary of j , ~  X t ( A ,  A’) from &; therefore a and & are cohomologous, i.e. they 
define the equivalent extension of the loop group r (Segal 1981). It follows that the 
central extension and the non-central extension involved in (1  + 1)-dimensional 
anomalous Yang-Mills theories are actually equivalent to each other. This is true only 
in (1 + 1)-dimensional theories. 

It is not hard to see that the function a satisfies the cocycle condition because of 
the nilpotency of the operation A, 

a ( A g l ;  g * , g , ) + a ( A ;  g l , g , g , ) - a ( A ;  g i , g , ) - a ( A ;  g i g z , g , ) = z  (3.6) 

which is also an expression for the associativity of the new multiplication law (3.2). 
In order to avoid the discontinuities arising from the logarithm and  to cover the whole 
group r, one  has to use again the local coordinate systems Vu defined in 0 2. Choose 
two discs gl : D2 + G,, g2 : D’ + Gh such that gig2 : D2+ G,; then we get their restrictions 
on Si=aD2, g ,  E Vu and g 2 €  v b .  By (3.3) we can define 

where Sabc is given by ( 2 . 2 2 ) .  The transition functions h o b  between Vu and V, (for a 
gauge field A )  are still given by (2.23). 
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