Some remarks on the extension of loop groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21345
(http://iopscience.iop.org/0305-4470/21/2/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:25

Please note that terms and conditions apply.

Some remarks on the extension of loop groups ${ }^{\dagger}$

Bo-Yu Hou and Yao-Zhong Zhang
Institute of Modern Physics, Northwest University, Xian, China

Received 3 December 1986

Abstract

It is shown that in an anomalous Yang-Mills theory in $1+1$ dimensions one can realise a non-central extension of a loop group, in addition to the well known central extension. The descent equations and Mickelsson's local coordinate techniques are used to construct 2 -cocyles for the extended groups. It appears that in two-dimensional theories the central and non-central extensions of a loop group are compatible and equivalent to each other. The transition functions between different coordinate systems are also defined.

1. Introduction

Recently, there has been much active interest in certain infinite-dimensional Lie algebras in mathematics and theoretical physics (Fubini et al 1973, Friedan et al 1984, Goddard 1985, Olive 1985, Goddard and Horsley 1976, Kac 1980, Frenkel and Kac 1984). An example of an infinite-dimensional Lie algebra is the Kac-Moody algebra. The KacMoody algebra, which is also called a loop algebra, arises in non-Abelian anomalous gauge theories in two spacetime dimensions. The central extension of this algebra is called a commutator anomaly ('Schwinger-Jackiw-Johnson term') (Schwinger 1959, Jackiw and Johnson 1969) and is found to relate to the 2-cocyle of the cohomology of the Lie algebra of the group of gauge transformations (Faddeev 1984, Mickelsson 1983, 1985a, Nelson and Alvarez-Gaumé 1985). On the other hand, Pressley and Segal (1980) and Segal (1981) examine the central extension of the loop group corresponding to the loop algebra. They note that there is a topological obstruction to the construction of the extended group, i.e. one cannot think of the extended group as a product, but one should define it as a non-trivial fibre bundle. In a recent paper, Mickelsson (1985b) gives a concrete realisation of the central extension of the loop group in terms of local coordinate systems.

It is well known that in an anomalous Yang-Mills theory the anomalies entering the 'descent equations' (Stora 1983, Zumino 1983) are not uniquely defined. In particular, in one space dimension the commutator anomaly can be taken to be either ' c-number' (Zumino 1985) or to depend on a gauge field A (Zumino 1983); the former is the well known central extension of the loop algebra and the latter says that the Kac-Moody extension is non-central. On the group level, this means that we can construct two kinds of extensions of the loop group Γ : the central extension $\mathrm{U}(1) \rightarrow \hat{\Gamma} \rightarrow \Gamma$ and the non-central extension $\mathscr{A}(\mathrm{U}(1)) \rightarrow \hat{\Gamma} \rightarrow \hat{\Gamma}$, where $\mathscr{A}(\mathrm{U}(1))$ is the group of functions $\lambda: \mathscr{A} \rightarrow \mathrm{U}(1)$ with pointwise multiplication and \mathscr{A} is the space of all gauge fields.

[^0]One object of this paper is to describe the central extension $U(1) \rightarrow \hat{\Gamma} \rightarrow \Gamma$ which exists in an anomalous Yang-Mills theory in two dimensions. At this point, we should emphasise that we are considering a different model from the Wess-Zumino model (Wess and Zumino 1971, Witten 1983) which Mickelsson considers and in which there is no coupling with the external gauge field. Then we shall realise explicitly the non-central extension $\mathscr{A}(\mathrm{U}(1)) \rightarrow \hat{\Gamma} \rightarrow \Gamma$ involved. We find that two kinds of extensions are compatible and equivalent to each other. It follows that in ($1+1$)-dimensional anomalous Yang-Mills theory we can realise both central and non-central extensions.

2. The central extension of the loop group

Let G be a compact Lie group and \mathscr{G} its Lie algebra. Let $\langle a, b\rangle$ be an invariant bilinear form on \mathscr{G}. In one space dimension the simplest choice of commutator anomaly of an anomalous Yang-Mills theory gives rise to the current algebra which has the form of the Kac-Moody algebra $\hat{\mathscr{G}}=\operatorname{Map}\left(S^{1}, \mathscr{G}\right) \oplus \mathrm{i} R\left(\operatorname{Map}\left(S^{1}, M\right)=\right.$ the loop space of C^{∞} maps: $S^{1} \rightarrow M$) with the commutator (Zumino 1985, Faddeev 1984)

$$
\begin{equation*}
[u, v](x)=[u(x), v(x)]+\mathrm{i} c \int_{S^{1}}\left\langle u, u^{\prime}\right\rangle \mathrm{d} x \tag{2.1}
\end{equation*}
$$

in which $u, v \in \operatorname{Map}\left(S^{1}, \mathscr{G}\right), c$ is a real constant and $\mathrm{i} R$ commutes with everything. We want to construct a group $\hat{\Gamma}$ which has $\hat{\mathscr{G}}$ as its Lie algebra. We assume the following composition law (Segal 1981, Mickelsson 1985b)

$$
\begin{equation*}
\left(g_{1}, \lambda\right)\left(g_{2}, \mu\right)=\left(g_{1} g_{2}, \lambda \mu \exp \left[2 \pi \mathrm{i} \hat{\alpha}\left(g_{1}, g_{2}\right)\right]\right) \tag{2.2}
\end{equation*}
$$

where $\lambda, \mu \in \mathrm{U}(1)$ (circle group), $g_{1}, g_{2} \in \Gamma=\operatorname{Map}\left(S^{1}, G\right)$ (loop group) and $\hat{\alpha}$ is a real-valued function of g_{1} and g_{2}; the product $g_{1} g_{2}$ is defined pointwise.

Let us now construct the $\hat{\alpha}$. For simplicity, we consider the case $\mathrm{G}=\mathrm{SU}(2)$. Locally the cocycle $\hat{\alpha}$ can be obtained from the so-called descent equations. The starting point is the Chern-Pontryagian density in four dimensions (S^{4}):

$$
\begin{equation*}
\Omega_{4}^{-1}(F)=-\frac{1}{8 \pi^{2}} \operatorname{tr} F^{2} \quad \text { with } F=d A+A^{2} \tag{2.3}
\end{equation*}
$$

The four-dimensional integral of $\Omega_{4}^{-1}(F)$ is the second Chern number \mathbb{Z}. Let i specify a particular gauge, $i=A^{g_{1} \cdots g_{1}}=\left(g_{1} \ldots g_{i}\right)^{-1} A\left(g_{1} \ldots g_{1}\right)+\left(g_{1} \ldots g_{i}\right)^{-1} d\left(g_{1} \ldots g_{i}\right)$. Locally, Ω_{4}^{-1} is exact:

$$
\begin{equation*}
\Omega_{4}^{-1}(F)=d \Omega_{3}^{0}(A) \equiv d \Omega_{3}^{0}(0) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{3}^{0}(0)=\frac{-1}{8 \pi^{2}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right) \tag{2.5}
\end{equation*}
$$

is the Chern-Simons density. Taking the coboundary Δ (Faddeev 1984) of (2.4) gives $d \Delta \Omega_{3}^{0}(0)=0$ since Ω_{4}^{-1} is gauge invariant and d commutes with Δ. Thus locally

$$
\begin{equation*}
\left(\Delta \Omega_{3}^{0}\right)(0,1) \equiv \Omega_{3}^{0}(1)-\Omega_{3}^{0}(0)=d \Omega_{2}^{1}(0,1) \tag{2.6}
\end{equation*}
$$

Using $\Delta^{2}=0$, we have from (2.6) $d \Delta \Omega_{2}^{1}=0$, i.e. $\Delta \Omega_{2}^{1}$ is exact:

$$
\begin{equation*}
\left(\Delta \Omega_{2}^{1}\right)(0,1,2) \equiv \Omega_{2}^{1}(1,2)-\Omega_{2}^{1}(0,2)+\Omega_{2}^{1}(0,1)=d \Omega_{1}^{2}(0,1,2) . \tag{2.7}
\end{equation*}
$$

Similarly $\Delta \Omega_{1}^{2}$ is exact
$\left(\Delta \Omega_{1}^{2}\right)(0,1,2,3) \equiv \Omega_{1}^{2}(1,2,3)-\Omega_{1}^{2}(0,2,3)+\Omega_{1}^{2}(0,1,3)-\Omega_{1}^{2}(0,1,2)=d \Omega_{0}^{3}(0,1,2,3)$.

Equations (2.4)-(2.8) are called the descent equations (Stora 1983, Zumino 1983, Faddeev 1984).

Now let us consider (2.6) to be restricted to three dimensions (S^{3}). Restricting the Ω_{2}^{1} so obtained to two dimensions (S^{2}), we get the non-Abelian anomaly Ω_{2}^{1} in two dimensions. Similarly, consider (2.7) to be restricted to two dimensions and then restrict Ω_{1}^{2} to one dimension (S^{1}); then we can define cochain

$$
\begin{equation*}
\hat{\alpha}=\int_{S^{1}} \Omega_{1}^{2} \tag{2.9}
\end{equation*}
$$

Now the cocyle $\hat{\alpha}$ can be defined as follows. The coboundary of Ω_{3}^{0} is
$\left(\Delta \Omega_{3}^{0}\right)(0,1) \equiv \Omega_{3}^{0}(1)-\Omega_{3}^{0}(0)=-\frac{1}{8 \pi^{2}} d \operatorname{tr}\left(A d g g^{-1}\right)+\frac{1}{24 \pi^{2}} \operatorname{tr}\left(d g g^{-1}\right)^{3}$.
The last term $C^{(3)}=\left(1 / 24 \pi^{2}\right) \operatorname{tr}\left(d g g^{-1}\right)^{3}$ is closed and thus locally $C^{(3)}=d H^{(2)}$ for some 2 -form $H^{(2)}$. In order to compute $H^{(2)}$, we consider the set $B=$ $\left\{X \in \mathscr{G} \left\lvert\, \frac{1}{2} \operatorname{tr} X^{2}<\pi^{2}\right.\right\}$ and $\mathrm{G}_{1}=\mathrm{SU}(2) /\{-1\}$; then the exponential map $B \rightarrow \mathrm{G}_{1}$ is $1-1$ and C^{x}; the sphere $\operatorname{tr} X^{2}=2 \pi^{2}$ is mapped onto the point -1 . Let g be a map from a 2 -sphere in four dimensions into G_{1}; we can define the logarithm $\ln g: S^{2} \rightarrow B$. Write such g as $\exp u$ and we can compute $H^{(2)}$ from the integral

$$
\begin{equation*}
H^{(2)}(\ln g)=\frac{1}{24 \pi^{2}} \int_{0}^{1} \operatorname{tr}\left(d g(x, t) g(x, t)^{-1}\right)^{3} \tag{2.11}
\end{equation*}
$$

in which $g(x, t)=\exp (t u(x))$. By (2.6), (2.10) and (2.11), we obtain the non-Abelian anomaly in two dimensions:

$$
\begin{equation*}
\Omega_{2}^{1}(0,1) \equiv \Omega_{2}^{1}\left(\tilde{A}, \tilde{A}^{\tilde{g}}\right)=-\frac{1}{8 \pi^{2}} \operatorname{tr}\left(\tilde{A} d \tilde{g} \tilde{g}^{-1}\right)+H^{(2)}(\ln \tilde{g}) \tag{2.12}
\end{equation*}
$$

where we have used \tilde{Q} to denote a quantity Q to be restricted to two dimensions.
Applying the coboundary operation Δ to (2.12) gives

$$
\begin{align*}
\left(\Delta \Omega_{2}^{1}\right)(0,1) & \equiv \Omega_{2}^{1}(1,2)-\Omega_{2}^{1}(0,2)+\Omega_{2}^{1}(0,1) \\
& =-\frac{1}{8 \pi^{2}} \operatorname{tr}\left(\tilde{g}_{1}^{-1} d \tilde{g}_{1} d \tilde{g}_{2} \tilde{g}_{2}^{-1}\right)+H^{(2)}\left(\ln \tilde{g}_{1}\right)+H^{(2)}\left(\ln \tilde{g}_{2}\right)-H^{(2)}\left(\ln \tilde{g}_{1} \tilde{g}_{2}\right) \tag{2.13}
\end{align*}
$$

We see that $\Delta \Omega_{2}^{1}$ does not depend on \tilde{A}; this is a property of the descent equations special to two-dimensional theories.

Let D^{2} be some two-dimensional disc in four dimensions. Then any $\tilde{g}: D^{2} \rightarrow \mathrm{G}_{1}$ can be restricted to a map $g: \partial D^{2} \rightarrow \mathrm{G}_{1}$, where ∂D^{2} is the boundary of D^{2}. We shall consider
the case $S^{1}=\partial D^{2}$. Let \tilde{g}_{1} and \tilde{g}_{2} be two discs in G_{1} such that $\tilde{g}_{1} \tilde{g}_{2}: D^{2} \rightarrow G_{1}$. We can define

$$
\begin{align*}
& \hat{\alpha}\left(g_{1}, g_{2}\right)=\int_{D^{2}}\left(\Delta \Omega_{2}^{1}\right)(0,1,2)=-\frac{1}{8 \pi^{2}} \int_{D^{2}} \operatorname{tr}\left(\tilde{g}_{1}^{-1} d \tilde{g}_{1} d \tilde{g}_{2} \tilde{g}_{2}^{-1}\right) \\
&+\int_{D^{2}} H^{(2)}\left(\ln \tilde{g}_{1}\right)+H^{(2)}\left(\ln \tilde{g}_{2}\right)-H^{(2)}\left(\ln \tilde{g}_{1} \tilde{g}_{2}\right) \tag{2.14}
\end{align*}
$$

The function $\hat{\alpha}\left(g_{1}, g_{2}\right)$ depends on the chosen restriction; in other words $\hat{\alpha}$ depends on the chosen disc D^{2}. The proof is as follows. Let $\tilde{g}_{1+}, \tilde{g}_{2^{+}}: D_{T}^{2} \rightarrow G_{1}$ and $\tilde{g}_{1_{-}}$, $\tilde{g}_{2_{-}^{2}}: D_{-}^{2} \rightarrow \mathrm{G}_{1}$ be the maps defined on the north semisphere D_{+}^{2} and south semisphere D^{2}, respectively, such that $\tilde{g}_{1+} \tilde{g}_{2+}: D_{+}^{2} \rightarrow G_{1}$ and $\tilde{g}_{1-} \tilde{g}_{2-}: D_{-}^{2} \rightarrow G_{1} ;\left(\tilde{g}_{1+}, \tilde{g}_{2+}\right)$ have the same values as ($\tilde{g}_{1-}, \tilde{g}_{2-}$) when restricted on $S^{1}=\partial D_{+}^{2}=-\partial D_{-}^{2}$. Then

$$
\begin{align*}
\hat{\alpha}\left(g_{1+}, g_{2+}\right) & -\hat{\alpha}\left(g_{1-}, g_{2-}\right)=\int_{D_{+}^{2}}\left(\Delta \Omega_{2}^{1}\right)(0,1,2)-\int_{D_{2}^{2}}\left(\Delta \Omega_{2}^{1}\right)(0,1,2) \\
& =-\frac{1}{8 \pi^{2}} \int_{S^{2}} \operatorname{tr}\left(\tilde{g}_{1}^{-1} d \tilde{g}_{1} d \tilde{g}_{2} \tilde{g}_{2}^{-1}\right)+\int_{S^{2}} H^{(2)}\left(\ln \tilde{g}_{1}\right)+H^{(2)}\left(\ln \tilde{g}_{2}\right)-H^{(2)}\left(\ln \tilde{g}_{1} \tilde{g}_{2}\right) \\
& \equiv \int_{S^{2}}\left(\Delta \Omega_{2}^{1}\right)(0,1,2) \tag{2.15}
\end{align*}
$$

We would like to show that (2.15) equals an integer \mathbb{Z}. For this purpose we divide S^{4} into three discs $D^{4}(i), i=0,1,2$ (Hou et al 1986). The boundary of $D^{4}(i)$ is a three-dimensional sphere $S^{3}(i), \partial D^{4}(i)=S^{3}(i)$. We then divide $S^{3}(i)$ into sums of discs $D^{3}(i, j), S^{3}(i)=\Sigma_{j(\neq i)} D^{3}(i, j)$, such that $D^{3}(i, j)$ have a common boundary S^{2}, $\partial D^{3}(i, j)=S^{2}(i, j)=(-1)^{i+j-1} S^{2}$. Then the last term in (2.15) is

$$
\begin{gather*}
\int_{S^{2}}\left(\Delta \Omega_{2}^{1}\right)(0,1,2)=\sum_{i<j} \int_{S^{2}(1, j)} \Omega_{2}^{1}(i, j)=\sum_{i<j} \int_{D^{3}(1, j)} \mathrm{d} \Omega_{2}^{1}(i, j)=\sum_{i<j} \int_{D^{3}(1, j)}\left(\Delta \Omega_{3}^{0}\right)(i, j) \\
=\sum_{i \neq j} \int_{D^{3}(,, j)} \Omega_{3}^{0}(i)=\sum_{i=0}^{2} \int_{S^{3}(1)} \Omega_{3}^{0}(i)=\sum_{i=0}^{2} \int_{D^{4}(1)} \mathrm{d} \Omega_{3}^{0}(i) \\
=\sum_{i=0}^{2} \int_{D^{4}(1)} \Omega_{4}^{-1}(F)=\int_{S^{4}} \Omega_{4}^{-1}(F)=\mathbb{Z} \tag{2.16}
\end{gather*}
$$

It follows from (2.15) and (2.16) that the function $\hat{\alpha}$ depends on the chosen restriction. However, the difference \mathbb{Z} does not matter since we are only interested in $\exp (2 \pi \mathrm{i} \hat{\alpha})$ and not in $\hat{\alpha}$ itself.

The new product law (2.2) is associative iff

$$
\begin{equation*}
\hat{\alpha}\left(g_{2}, g_{3}\right)+\hat{\alpha}\left(g_{1}, g_{2} g_{3}\right)-\hat{\alpha}\left(g_{1}, g_{2}\right)-\hat{\alpha}\left(g_{1} g_{2}, g_{3}\right)=\mathbb{Z} \tag{2.17}
\end{equation*}
$$

However, this is just the cocycle condition. In order to check (2.17), we notice that for the chosen restriction we can write by (2.7) and (2.14)

$$
\begin{equation*}
\hat{\alpha}\left(g_{1}, g_{2}\right)=\int_{S^{\prime}} \Omega_{i}^{2}(0,1,2) \tag{2.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
(\Delta \hat{\alpha})\left(g_{1}, g_{2}, g_{3}\right)=\int_{s^{\prime}}\left(\Delta \Omega_{1}^{2}\right)(0,1,2,3) \tag{2.19}
\end{equation*}
$$

Repeating the division procedure discussed above, $S^{4}=\Sigma_{i=0}^{3} D^{4}(i), \partial D^{4}(i)=S^{3}(i)=$ $\Sigma_{j(\neq i)} D^{3}(i, j), \partial D^{3}(i, j)=S^{2}(i, j)=\Sigma_{k(\neq i,)} D^{2}(i, j, k)$, such that $D^{2}(i, j, k)$ have a common boundary $S^{1}, \partial D^{2}(i, j, k)=S^{1}(i, j, k)=(-1)^{i+j+k-1} S^{1}(i<j<k)$, we have

$$
\begin{align*}
(\Delta \hat{\alpha})\left(g_{1}, g_{2},\right. & \left.g_{3}\right)=\int_{S^{1}}\left(\Delta \Omega_{i}^{2}\right)(0,1,2,3)=\sum_{i<j<k} \int_{S^{1}(1, j, k)} \Omega_{1}^{2}(i, j, k) \\
& =\sum_{i<j<k} \int_{D^{2}(i, j, k)} \mathrm{d} \Omega_{1}^{2}(i, j, k) \\
& =\sum_{i<j<k} \int_{D^{2}(i, j, k)}\left(\Delta \Omega_{2}^{1}\right)(i, j, k)=\sum_{i<j \neq k} \int_{D^{2}(i, j, k)} \Omega_{2}^{1}(i, j)=\sum_{i<j} \int_{S^{2}(i, j)} \Omega_{2}^{1}(i, j) \\
& =\sum_{i<j} \int_{D^{3}(i, j)} \mathrm{d} \Omega_{2}^{1}(i, j)=\sum_{i<i} \int_{D^{3}(i, j)}\left(\Delta \Omega_{3}^{0}\right)(i, j)=\sum_{i \neq j} \int_{D^{3}(i, j)} \Omega_{3}^{0}(i) \\
& =\sum_{i=0}^{3} \int_{S^{3}(i)} \Omega_{3}^{0}(i)=\sum_{i=0}^{3} \int_{D^{4}(i)} \mathrm{d} \Omega_{3}^{0}(i)=\sum_{i=0}^{3} \int_{D^{4}(i)} \Omega_{4}^{-1}(F)=\int_{S^{4}} \Omega_{4}^{-1}(F)=\mathbb{Z} . \tag{2.20}
\end{align*}
$$

Thus equation (2.17) is seen to hold.
The function $\hat{\alpha}\left(g_{1}, g_{2}\right)$ defined above is only the 2 -cocycle for the extended group of $\operatorname{Map}\left(S^{1}, G_{1}\right)$ by $U(1)$. The set $\operatorname{Map}\left(S^{1}, G_{1}\right)$ is not a subgroup of Γ and one cannot continuously extend $\hat{\alpha}$ to the whole group because of the discontinuities arising from the logarithm. Therefore, in order to cover the whole group Γ one has to use local coordinate systems (Mickelsson 1985b). Choose two maps $\tilde{g}_{1}: D^{2} \rightarrow \mathrm{SU}(2) /\{-a\}=\mathrm{G}_{a}$, $\tilde{g}_{2}: D^{2} \rightarrow \mathrm{SU}(2) /\{-b\}=\mathrm{G}_{b}$ such that $\tilde{g}_{1} \tilde{g}_{2}: D^{2} \rightarrow \mathrm{SU}(2) /\{-c\}=\mathrm{G}_{c}$; then their restrictions on $S^{1}=\partial D^{2}$ are maps $g_{1}: S^{1} \rightarrow \mathrm{G}_{a}$ and $g_{2}: S^{1} \rightarrow \mathrm{G}_{b}$. Obviously, for each $a \in \mathrm{SU}(2)$ the set of all maps $g: S^{1} \rightarrow \mathrm{G}_{a}$ defines a coordinate patch V_{a} on $\operatorname{Map}\left(S^{1}, \mathrm{SU}(2)\right.$); the sum of all coordinate patches V_{a} gives a cover of $\operatorname{Map}\left(S^{1}, \mathrm{SU}(2)\right)$,

$$
\begin{equation*}
\operatorname{Map}\left(S^{1}, \mathrm{SU}(2)\right)=\bigcup_{a \in \mathrm{SL} ; 2)} V_{a} . \tag{2.21}
\end{equation*}
$$

Thus we can define (Mickelsson 1985b)

$$
\begin{align*}
\hat{\alpha}_{a b c}\left(g_{1}, g_{2}\right)= & -\frac{1}{8 \pi^{2}} \int_{D^{2}} \operatorname{tr}\left(\tilde{g}_{1}^{-1} d \tilde{g}_{1} d \tilde{g}_{2} \tilde{g}_{2}^{-1}\right) \\
& +\int_{D^{2}} H^{(2)}\left(\ln a^{-1} \tilde{g}_{1}\right)+H^{(2)}\left(\ln b^{-1} \tilde{g}_{2}\right)-H^{2}\left(\ln C^{-1} \tilde{g}_{1} \tilde{g}_{2}\right) \tag{2.22}
\end{align*}
$$

Modulo integer \mathbb{Z} the function $\hat{\alpha}_{a b c}\left(g_{1}, g_{2}\right)$ does not depend on the chosen restriction. The proof is the same as the case in which $a=b=c=1$ since $d H^{(2)}\left(\ln a^{-1} g\right)=$ $C^{(3)}\left(a^{-1} g\right)=C^{(3)}(g)$ for a constant $a \in \mathrm{SU}(2)$ and the descent equations remain unchanged. The transition functions between V_{a} and V_{b} (for a gauge field A) are defined by

$$
\begin{equation*}
h_{a b}(g)=\int_{D^{2}} H^{(2)}\left(\ln a^{-1} \tilde{g}\right)-H^{(2)}\left(\ln b^{-1} \hat{g}\right) \tag{2.23}
\end{equation*}
$$

where $g \in V_{a} \cap V_{b}$ is a restriction of $\tilde{g}: D^{2} \rightarrow \mathrm{G}_{a} \cap \mathrm{G}_{b}$ on $S^{1}=\partial D^{2}$. The value $h_{a b}(g)$ does not depend on the chosen restriction since one is only interested in $\exp \left(2 \pi \mathrm{i}_{a b}\right)$. namely, let $g_{ \pm}$be two discs D_{+}^{2} and D_{-}^{2} in $G_{a} \cap \mathrm{G}_{b}$ such that their restrictions on $S^{1}=\partial D_{+}^{2}=-\partial D_{-}^{2}$ have the same values. Then we can form $\tilde{g}: S^{2}=D_{+}^{2} \cup D_{-}^{2} \rightarrow \mathrm{G}_{a} \cap \mathrm{G}_{b}$
by joining along the common boundary and the difference between the two expressions for $h_{a b}$ is

$$
\begin{align*}
h_{a b}\left(g_{-}\right)-h_{a b}\left(g_{-}\right)= & \int_{D_{-}^{2}} H^{(2)}\left(\ln a^{-1} \tilde{g}_{+}\right)-H^{(2)}\left(\ln b^{-1} \tilde{g}_{+}\right) \\
& -\int_{D_{-}^{2}} H^{(2)}\left(\ln a^{-1} \tilde{g}_{-}\right)-H^{(2)}\left(\ln b^{-1} \tilde{g}_{-}\right) \\
= & \int_{S^{2}} H^{(2)}\left(\ln a^{-1} \tilde{g}\right)-H^{(2)}\left(\ln b^{-1} \tilde{g}\right)=\int_{D^{3}} C^{(3)}\left(g_{a}\right)-C^{(3)}\left(g_{b}\right) \\
= & \int_{S^{3}} C^{(3)}\left(g_{a b}\right)=W\left[g_{a b}\right]=\mathbb{Z} \tag{2.24}
\end{align*}
$$

where $g_{a b}: S^{3} \rightarrow \mathrm{G}$ is obtained from g_{a} and g_{b} by joining along $S^{2}=\partial D^{3}$ and $W\left[g_{a b}\right]$ stands for the winding number of map $g_{a b}$. Therefore by the definitions

$$
\begin{equation*}
\hat{\alpha}_{a b c}\left(g_{1}, g_{2}\right)-\hat{\alpha}_{a^{\prime} b c}\left(g_{1}, g_{2}\right)=h_{a c}\left(g_{1}\right) \tag{2.25}
\end{equation*}
$$

and similarly for the indices b and c.

3. The non-central extension of the loop group

As is well known, in one space dimension the current algebra of an anomalous Yang-Mills theory can have the following anomaly (Zumino 1983):

$$
\begin{equation*}
[u, v](x)=[u(x), v(x)]+\mathrm{i} C \int_{S^{1}} \operatorname{tr}(u v A) \tag{3.1}
\end{equation*}
$$

where A is a \mathscr{G}-valued vector potential 1-form on S^{1}. The Lie algebra extension of $\operatorname{Map}\left(S^{1}, \mathscr{G}\right)$ is now infinite dimensional and thus the extension is non-central. It is natural to think of (3.1) as the Kac-Moody algebra on the gauge orbit through A in the space of all vector potentials; the different gauge orbits correspond to the different Kac-Moody algebras, in contrast to the case discussed in § 2. In order to examine the group corresponding to (3.1), we consider the extension $\mathscr{A}(\mathrm{U}(1)) \rightarrow \hat{\Gamma} \rightarrow \Gamma$; it leads us to assume the multiplication table

$$
\begin{equation*}
\left(g_{1}, \lambda\right)\left(g_{2}, \mu\right)=\left(g_{1} g_{2}, \lambda \mu \exp \left[2 \pi \mathrm{i} \alpha\left(A ; g_{1}, g_{2}\right)\right]\right) \tag{3.2}
\end{equation*}
$$

where $\lambda, \mu \in \mathscr{A}(\mathrm{U}(1))$, and now α is a real-valued function of g_{1}, g_{2} and A. We can ask what the group cocycle α is. Following the same arguments as in the previous section, locally we can define

$$
\begin{align*}
\alpha\left(A ; g_{1}, g_{2}\right) & =\int_{D^{2}}\left(\Delta \Omega_{2}^{1}\right)\left(\tilde{A}, \tilde{A}^{\tilde{g}_{1}}, \tilde{A}^{\tilde{g}_{1} \dot{g}_{2}}\right)-\int_{S^{\prime}}\left(\Delta X_{1}^{1}\right)\left(A, A^{g_{1}}, A^{g_{1} g_{2}}\right) \\
& \equiv \hat{\alpha}\left(g_{1}, g_{2}\right)-\int_{S^{\prime}} X_{1}^{1}\left(A^{g_{1}}, A^{g_{1} g_{2}}\right)-X_{1}^{1}\left(A, A^{g_{1} g_{2}}\right)+X_{1}^{1}\left(A, A^{g_{1}}\right) \tag{3.3}
\end{align*}
$$

where

$$
\begin{equation*}
X_{1}^{1}\left(A, A^{g}\right)=\int_{\Delta^{\prime}} \chi_{1}^{1} \tag{3.4}
\end{equation*}
$$

with Δ^{1} being a 1 -simplex in group space, and χ_{1}^{\prime}, given by the so-called 'triangle formula' (Manes et al 1986), has the following expression:

$$
\begin{equation*}
\chi_{1}^{\}}=\frac{1}{24 \pi^{2}} \operatorname{tr}\left\{g^{-1} \delta g\left(g^{-1} A g+g^{-1} d g\right)\right\} \tag{3.5}
\end{equation*}
$$

in which δ is the differentiation with respect to any parameters which the element g may depend on. When g_{1} and g_{2} are in the vicinity of the unit element the function α reduces to the anomaly in equation (3.1).

Modulo integer \mathbb{Z} the function α does not depend on the chosen extension; the proof is essentially the same as in the previous section. Notice that α differs by a coboundary of $\int_{S^{\prime}} X_{1}^{1}\left(A, A^{g}\right)$ from $\hat{\alpha}$; therefore α and $\hat{\alpha}$ are cohomologous, i.e. they define the equivalent extension of the loop group Γ (Segal 1981). It follows that the central extension and the non-central extension involved in ($1+1$)-dimensional anomalous Yang-Mills theories are actually equivalent to each other. This is true only in ($1+1$)-dimensional theories.

It is not hard to see that the function α satisfies the cocycle condition because of the nilpotency of the operation Δ,

$$
\begin{equation*}
\alpha\left(A^{g_{1}} ; g_{2}, g_{3}\right)+\alpha\left(A ; g_{1}, g_{2} g_{3}\right)-\alpha\left(A ; g_{1}, g_{2}\right)-\alpha\left(A ; g_{1} g_{2}, g_{3}\right)=\mathbb{Z} \tag{3.6}
\end{equation*}
$$

which is also an expression for the associativity of the new multiplication law (3.2). In order to avoid the discontinuities arising from the logarithm and to cover the whole group Γ, one has to use again the local coordinate systems V_{a} defined in § 2. Choose two discs $\tilde{g}_{1}: D^{2} \rightarrow \mathrm{G}_{a}, \tilde{g}_{2}: D^{2} \rightarrow \mathrm{G}_{b}$ such that $\tilde{g}_{1} \tilde{g}_{2}: D^{2} \rightarrow \mathrm{G}_{c}$; then we get their restrictions on $S^{1}=\partial D^{2}, g_{1} \in V_{a}$ and $g_{2} \in V_{b}$. By (3.3) we can define
$\alpha_{a b c}\left(A ; g_{1}, g_{2}\right)=\hat{\alpha}_{a b c}\left(g_{1}, g_{2}\right)-\int_{S^{1}} X_{1}^{1}\left(A^{g_{1}}, A^{g_{1} g_{2}}\right)-X_{1}^{1}\left(A, A^{g_{1} g_{2}}\right)+X_{1}^{1}\left(A, A^{g_{1}}\right)$
where $\hat{\alpha}_{a b c}$ is given by (2.22). The transition functions $h_{a b}$ between V_{a} and V_{b} (for a gauge field A) are still given by (2.23).

References

Faddeev L D 1984 Phys. Lett. 145B 81
Frenkel I and Kac V G 1984 Invent. Math. 62455
Friedan D, Qui Z and Shenker S 1984 Phys. Rev. Lett. 521575
Fubini S, Hanson A J and Jackiw R 1973 Phys. Rev. D 71732
Goddard P 1985 DAMTP preprint 85-7
Goddard P and Horsley R 1976 Nucl. Phys. B 111272
Hou B Y, Hou B Y and Wang P 1986 Lett. Math. Phys. 11179
Jackiw R and Johnson K 1969 Phys. Rev. 1821459
Kac 1980 Adv. Math. 35264
Manes J, Stora R and Zumino B 1986 Commun. Math. Phys. 102157
Mickelsson J 1983 Lett. Math. Phys. 745

- 1985a Commun. Math. Phys. 97361
- 1985b Phys. Rev. Lett. 55301

Nelson P and Alvarez-Gaumé L 1985 Commun. Math. Phys. 99103
Olive D I 1985 Preprint Imperial/TP/84-85/14
Pressley A N and Segal G B 1980 Loop groups (Oxford: Oxford University Press)
Schwinger 1959 Phys. Rev. Letl. 3296

Segal G B 1981 Commun. Math. Phys. 80301
Stora R 1983 Cargese Lectures (New York: Plenum)
Wess J and Zumino B 1971 Phys. Lett. 37B 95
Witten E 1983 Nucl. Phys. B 223455
Zumino B 1983 Relativity, Groups and Topology ed B S DeWitt and R Store (Amsterdam: North-Holland) 1985 Nucl. Phys. B 253477

[^0]: + Supported in part by the science fund of the Chinese Academy of Science.

